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Abstract

A programming language can provide much better support for interprocess communica-
tion than a librar package can. Most message-passing languages limit this support to
communication between the pieces of a single program, but this need not be the case.
Lynx facilitates convenient, typesafz message passing not only within applications, but
also between applications, and among distributed collections of servers. Specifically, it
addresses issues of compiler statelessness, late binding, and protection that allow run-
time interaction between processes that were developed independently and that do not
tr-ut each other. Implementation experience with Lynx has yielded important insights
into the relationship between distributed operating systems and language runtime sup-
port packages, and into the inherent costs of high-level message-passing semantics.

1. Introduction

A programming language has clear advantages over a librar, :kage for communication between

processes in a distributed environment.' These advantages include non-procedural syntax, direct use of

program variables and types, type checking, exception handling, and support for concurrent conversations.

Unfortunately, most existing distributed languages are better suited to communication between the

processes of a single application than they are to communication between processes that are developed

independently. Such independent development is characteristic both of the systems software for multicom-

puters and of the applications software for geographically-distributed networks. Lynx [19,21] is a

message-passing language designed to support both application and system software in a single conceptual

framework. It extends the advantages of language-based communication to processes designed in isola-

tion, and compiled and placed in operation without knowledge of their peers.

Lynx was developed at the University of Wisconsin, where it was first implemented on the Charlotte

milticomputer operating system [2, 11]. Charlotte was designed without Lynx, but experience with a con-

ventional library interface to the kernel suggested that ianguage support tor communication could make the

I Throughout this paper, the term "process" is used to denote a heavyweight entity with its own address space,

supported by the operating system. Active entities in the same address space will be called lightweight threads of
control.



programmer's life much easier. Particularl) troublesome was the construction of operating system server
processes, Ahich needed to communicate conveniently, safely, and efficiently with an ever-changing pool

of cienLs, most of whom could be expected to have been wnuen long after the server was placed in opera-
tion. Lynx was designed to provide an unusually high degree of support for dynamic changcL in intercon-
nection topology, protection frorr. untrusted processes, and concurrent, interleaved conversations with an
arbitrary number of communication partners. To permit the construction of servers, Lynx was designed to

provide these benefits without depending on any' sort of global information at compile time.

The Lynx compiler is a pure translator it requires no input other than a source program and produces
no output other than an object program. In particular, it does not depend on a database of type definitions

or interface descriptions in order to guarantee the validity of messages. A novel application of hash-
ing '22j provides efficient run-time type checking on messages at negligible cost and at a very high level of

confidence.

Within the context of independent comoilation, Lynx supports reconfiguration and protection with a
vatual-circuit abstraction called the link. It maintains context for multiple conversations by combining

message passing with the scheduling of lightweight threads of control. A link is a symmetric two-
directional channel, like a pair of tin cans connected by string. The cans themselves (link ends) are first-

class objects that can be created, destroyed, stored in data structures, and passed in messages. It is by pass-
ing them in messages that the process connection graph is changed. Threads are a program structuring tool

that allows a sequential execution path to be associated with each logically separate conversation. A file

server, for example might have a separate thread of control for each of its open files. Each thread could

then use straight-line code to perform operations on behalf of a client. Special operations (seeks, for exam-
ple) could be performed by nested threads that share file-specific data structures. Lynx allows these threads

to be created automatically, in response to incoming requests.

In addition to systems software, Lynx has been used to implement a number of parallel and distrib-

uted applications. At the University of Rochester, the compiler has been ported to the BBN Butterfly mul-
tiprocessor and its Chrysalis operating system. Experience with the two implementations, together with
paper designs for two others, has led to important insights into the relationship between a language run-
time package and the underlying operating system [19]. A detailed performance study of the Chrysalis

implementation has helped to provide a deeper understanding of the inherent costs of message-passing sys-

tems [21].

2. Motivation

2.1. Message-Passing Languages

An operating system that allows processes in separate address spaces to communicate outside the file

system will generally provide k-,-rnel calls for messagz passing. User programs wili dc.esz these caz"s
through a traditional subroutine library. Experience with a wide variety of message-passing systems, how-

ever, suggests that users find this sort of traditional interface inadequate. The crux of the problem is that
interprocess communication is significantly more complicated, from the user's point of view, than are other

kernel services.
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Structured Informauon

Like file system read and write operations. library-based communication primitives generally transfer

uninterpreted stream> of b\te.. The desire to impose structure on those bytes ha>, often been a
motivation for language-level file system interfaces, and that motivation applies even more strongly

to messages. Programmers want to be able to send and receive program variables by name, includ-
ing those with structured and abstract types, without sacrificing type checking and without explicitly

packing and unpacking buffers.

Error Handling and Protection

Interprocess communication is more error-prone than other kernel operations. Both hardware and

software may fail. Software is a particular problem, since processes that are not part of the same

application cannot in general trust each other. Compared to an open file, a connection to an arbitrary
process can display vastly less predictable behavior. Fault-tolerant algorithms may allow a process

to recover from many kinds of detectable failures, but it can be awkward to deal with those errors in

line b\ examining kernel call return codes.

Concurrent Conversations
While a conventional sequential program rarely has anything interesting to do while waiting for a

kernel call to complete, a process in a distributed environment is much more likely to be budgeting

its time among multiple activities. A server, for example, may be working on behalf of multiple

clie:,ts at once. It cannot afford to be blocked while waiting for a particular client to respond. The

kernel can help by providing non-blocking sends and receives, but then the ser-ver begins to resemble

a state machine more than it resembles straight-line code. The inevitable interleaving of separate

conversations leads to very obscure programs.

A language-based approach to communication can improve the situation significantly.

(1) Communication statements in a language can make direct use of program variables and eliminate the
need to think about message buffers. The compiler can generate code to gather variables to be sent

into a buffer acceptable to the operating system. At the message's destination the compiler can

arrange to scatter the contents of the buffer into appropriate variables in the receiving process. Since

the compiler knows the types of all the values involved, it can take steps to ensure that the sender and
receiver agree on an interpretation for the bytes contained in the message.

(2) If the programming language includes facilities for exception handling, many of the errors that may

occur during communication can be passed to exception handlers outside the normal flow of control.
A single exception handler can protect a large number of communication statements. Certain kinds

of errors may even be handled in the run-time support package, without ever becoming visible to the

programmer.

(3) If the programming language includes facilities for concurrency, separate conversations may be han-

dled by separate threads of control. The run-time support package can be designed to include a

dispatcher routine that examines each incoming message and makes it available to the appropriate

thread.

Each of these numbered points corresponds directly to one of the problems with library-based com-

munication. In addition, a language-based approach to communication can offer specialized syntax and
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can arrange for useful side-effects to communication statements. It would be difficult, for example, to pro-
vide the functionality of an Ada select statement [271 without its distinctive syntax. A less widely appreci-

ated feature of Ada is its carefullv-desiened semantics for data sharing between tasks. The language refer-

ence manual requires a "shared"- variable to have a single, consistent value only at the times when tasks

exchange ;iiessc.. A-. Ada implementation can choose to replicate variables at multiple sites and can

allow the copies to acquire inconsistent values, so long as it reconciles the differences before the program-

mer can detect them - i.e. before the variables can be compared to a value in a message. In a similar
vein, the compiler for NIL [24] tra, ,s the status of every program variable and treats a variable that has

just been sent in a message as if it were uninitialized. This facility allows the run-time system to imple-

ment message passing on a shared-memory machine by moving pointers, without worrying that a sender
will subsequently modify the variables it has "sent." In Argus [15], one can send messages between

processes that use completely different implementations of a common abstract type. The compiler inserts

code in the sender to translate data into a universal, machine-independent format. It inserts code in the

receiver to translate that data back into an appropriate local version of the abstraction.

The advantages of language-level communication can be realized either by designing a language

from scratch or by augmenting an existing language. The latter approach is typified by remote procedure
call stub generators. A stub generator is a program that translates a set of declarations for remote opera-
tions into ordinary procedures, which can be called from a conventional language, and which hide the

details of the underlying message passing. Though a stub generator cannot provide non-procedural syntax

or fancy side efiects, it can eliminate most of the immediate problems with straightforward use of a kernel

call library. By processing the user's declarations it can provide type checking and automatic
scatter/gather of message parameters. In conjunction with a language that includes exception handling, it

can eliminate most of the complexity of examining kernel call return codes. If the language includes con-
currency, it may even be possible to write a dispatcher that automatically routes incoming messages to the

threads of control that want them. 2 One of the most successful stub generators can be found in the Cedar

environment at Xerox PARC [3].

2.2. Inter-Program Communication

The bulk of the distributed language literature focuses on the needs of distributed programs - col-

lections of processes that are designed to work together and that constitute the pieces of a single, coherent
whole. There are equally important scenarios, however, in which communication must occur between

processes that were developed independently. Distributed systems software provides one class of exam-

ples. Large-scale distributed applications provide another.

The past decade and a half has seen the development of a large number of distributed operating sys-

tems. The typical goal of such systems is make a collection of locally-distributed computers appear to

work like a single machine. In the interests of minimal kernel size, configurability, and easy modification,
many of the traditional functions of a monolithic operating system are placed outside the kernel in a

2 To support a dispatcher. the concurrency mechanism must be designed in such a way that a particular thread can
be made runnable explicitly. Languages that provide a static number of synchronization conditions (as. for example, in
Modula-I [29]) are not well suited to this purpose.



distributed op.erating system. In Charlotte, for example, user-level code is used to implement a process and

memor\ manager (the starter), a command interpreter, a process connecton facilitN, two kinds of file

servers, a name server (the switchboard), and a terminal driver. The communication activity of these

processes is at least as complicated, and often more complicatd, than that of any single user application.

From the user's point of view, the presense of servers means that even the most self-contained of

programs is like]\ to need to communicate occasionally with an independently-developed process about

which it knov, s very little. Language support can make this communication much more convenient and

safe, particularly if it matches the style of communication used within the program. In fact, the more one

moves away from the centralized model of a traditional operating system and toward a distributed collec-

tion of servers, the harder it becomes to draw the line between one program and the next.

Consider a large-scale application that spans a geographically distributed collection of machines. An

airline reservation system is an obvious example. It is possible to conceive of such an application as a sin-

gle distributed program, but the concept wears thin when one considers the large number of institutions

involved. It is one thing to talk about a program developed by a single organization (the airline, say) and

running on machines owned and operated by that organization. It is quite another to talk about a program

that has pieces under the control of a thousand different travel agencies, possibly written in different

languages and running on different types of hardware. If we consider the subject of automatic teller

machines and the electronic transfer of funds between competing, autonomous banks, the concept of a sin-

gle distributed program breaks down altogether. As internets proliferate, the software required for network

management and routing is also developing into a multi-program distributed application. Further examples

can be found in the Defense Department's need for global information gathering and communication, and
in similar applications in weather forecasting and ground control for spacecraft.

2.3. Special Language Needs

When compared to a multi-process program, the pieces of a multi-program application have unusu-

ally stringent needs for compile- and run-time flexibility, protection, and conversation management.

Flexibility

Operating system server processes must be able to communicate with clients that did not even exist

when the server was designed. The obvious way to perform type checking for this communication is create

for each server an interface description that can be used when constructing clients. Unfortunately, main-

taining a consistent set of interface descriptions across distributed sites becomes a non-trivial database

management problem as soon as there is a significant number of servers or sites. If the compiler insists that

a client be compiled with exactly the same set of declarations that were used to compile the server (this

amounts to insisting on name equivalence for types [12, pp. 134-136]), then the database problem becomes

particularly severe: it requires unforgable version numbers that change when the data changes but not

when it is copied.

Upward compatibility is also a problem. If a new comment is added to the interface description for

the file server, we will certainly want to avoid recompiling every process that uses files. If a new routine is

added without changing the behavior of the rest of the interface, we should also avoid recompilation. If

changes are made to certain routines but not to others, we should recompile only those processes whose
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behavior would otherA ise be incorrect. It is possible to build a compiler that incorporates a formal notion
of upward conipatibilat 261, but the task is not a simple one, even in the absence of multiple sites. Lynx

addresNes the problem bN checking structural type equivalence, at run time, for each individual message:
no central database ol types is needed, and upward-compatible programs run without recompilation.

Servers must frequently change their interconnection topology at run time. To facilitate changes,
Lynx makes the message channel between processes an explicit first-class object, the link, and provides

variables that name a link. A link can be used to represent an abstract resource that is distinct from both

the process(es) that implement it and the operations it provides. Examples of resources include a file, a

bibliographic database, a print spooler, and a process creation facility.

Most other languages that allow connections to be reconfigured use variables that name processes or
remote operauon>. The problem with naming processes is that a resource may be provided by a collection

of processes: a distributed server may prefer that a user communicate with different constituent processes

at different times, in order to balance workload or minimize communication costs. If users address their
messages to processes the server cannot effect topology changes without informing the user, a violation of

abstraction. The problem with naming remote operations is that a resource may provide different sets of
operations to diflerent clienis, or at different points in time. Even with facilities for bundling related opera-

tions (such as the resource capabilities of SR [1]), the nature of each abstraction must be known to every

client; servers cannot change the set of available operations to reflect changes in the state of the abstraction

or to implement access control. If the resource is passed among clients, the desire for information hiding

suggests that each client should be aware of only the operations it needs.

Since type checking is performed on messages in Lynx, connections between processes can be mani-

pulated without knowing the types of messages that links may eventually carry. Name servers and other
interconnection utilities can establish connections between processes whose message interfaces were
created long after the servers were placed in operation. In a language with typed connections (particular

one such as Ada. Awhich addresses messages to operations) one cannot write a name server capable of regis-

tering clients that use newly-created message types.

Protection

Pieces of a multi-program application cannot afford to trust each other. Even if malice is not an

issue (as a result, let us say, of external administrative measures), a healthy respect for the principles of

software engineering dictates that each process be able to recover from arbitrary errors on the part of its
communication partners. The easiest way to provide such protection from external errors is probably to

incorporate message passing into a general-purpose exception-handling mechanism, with a built-in excep-

tion for each type of system-detectable error. It will always be possible, of course, for a process to send
messages with incorrect data, but no language could prevent it from doing so. The types of errors that must

be propagated up to the user are such language- and system-defined events as type clashes (with run-time

type checking), use of an incorrect address, termination of a communication partner, or failure of a p.,ces-

sor or channel.

On a more fundamental level, communication facilities for mutually suspicious processes must be
designed in such a way that each process can exercise control over whom it talks to when. A server, for

example, must be able to specify not only the clients to whom it wishes to send messages, but also the
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clients from ,hom it is hilling to reeei~ . Even if it i, willine to receive messages from anywhere, a
server is still hkel' to need to differ.ntbatc bctvoecn clients in order to provide them with differin: levels of
servic or extend to them diferinc level, of trust. Few exisune languages provide a receiver " ith thi, sort

of expressive po, er.

Conversation Management

In a language \kith multiple threads of control, the concurrency between threads can be used for two
quite different purposes. It can serve to express true parallelism, for the sake of enhanced performance, or

it can serve a-s a program structunng tool to simplify the exposition of certain kinds of algorithms. In a
server process the latter purpose may be particularly important; it captures the existence of independent,
partially-completed conversations with multiple clients. Unless servers are expected to run on multi-
processor hardware, the goal of running threads in parallel may not be important at all. It is of course

attractive to have a lightweight thread mechanism that addresses both goals at once, but it introduces the
need fcr fine-grained synchronization on data that is shared between threads. In a monitor-based language

with a stub generator (Cedar [251 for example), the programmer must keep track of two very different

forms of synchronization: monitors shared by threads in the same address space and remote procedure

calls between threads in different address spaces. Dissatisfaction Aith a similar approach in Washington's
Eden project [5] was a principal motivation for the development of the Emerald language [4]. Emerald

provides an object-oriented maodel that eliminates the distinction between local and remote invocations, but
it still requires monitors to synchronize concurrent invocations within a single object. In SR [1], an alterna-

tive approach to unifying remote and local invocations allows a single style of synchroni7ation to be used

in all situations.

No matter how elegant the synchronization rnchanism, however, its use is stiU a burden to the pro-
grammer. In an implementation without true parallelism, pseudo-concurrent semantics for threads create
the appearance of race conditions that should not even exist. They force the use of explicit synchronization

on even the most simple operations. 3 An alternative approach adopted in Lynx, is to abandon the possibil-
ity of true parallelism within processes in favor of simpler semantics. Threads in Lynx, like coroutines, run

until they block. They are purely a program structuring tool.

In either case, whether threads are said to run in parallel or not, a process that is communicating with

several peers at once can benefit tremendously from a careful integration of thread management with the

facilities for passing messages. If each conversation with a client is to be represented by a separate thread
of control, a server may wish to arrange for new threads to be created automatically in response to certain
kinds of incoming messages. Such implicit receipt of messages by a newly created thread is characteristic

of concurrent languages with stub generators, and is also found in Argus, Emerald, and SR. In Lynx it is

extended to permit the creation of threads in a nested lexical context, so that related threads can share state.
In a language with coroutine-like threads, remote procedure calls and other blocking communication state-
ments can produce an automatic coroutine transfer to another, runnable thread.

3 To increment a shared variable, for example, a pseudo-concurrent thread need not worry about atomicity. It can
assume that a context switch will not occur between its read and write. If we pretend that threads are truly parallel,
then the program will not be "correct" unless we write code to specify that the physically atomic increment operation
should also be semantically atomic.
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3. Language Design

3.1. Links

Processc,, in Lynx are assumtd to be independent and autonomous. Each process is separatel com-

piled. At run time, processes communicate only b sending messages to each other over two-directional

communication chanmIs called hnk. Each process begins with an initial set of arguments, presumably
contaimng at leat one link to connect it to the rest of the world. Each link has a single process at each end.

As an example of a simple applicauon, consider a producer process that creates data of some type and
send1, that data to a consumer. Each process begins with a link to the other. The producer looks like this

Fr c-ess prc. 'cer (zcnsumer ink)

rrvtrr:er ... ,:dt ; reocte:

beg -- prscace:

loop

connect transfer (produce I) or. consumer;

end;

end prcducer.

The word "entry introduces a template for a remote operation. The general syntax is

ent ry opnamr.e ( request.paramneters ) : rep h. parametertypes

In this case, the transfer entry has no reply parameters.

An entry header can be followed by a body of code, or by the word "remote." In our case, we have
used the latter option because the code for transfer is in another process. Like the word "forward" in Pas-

cal, "remote" can also indicate that the code will appear later in the current process, either as a repeated
entry declaration or as the body of an accept statement, as in the consumer below.

The connect statement is used to request a remote operation. The vertical bar in the argument list

separates request and reply parameters.

connect opname ( exprlist I varlist ) on linkname

The current thread of control in the sending process is blocked until a reply message is received, even if the
list of reply parameters is empty. Our producer has only one thread of control (more complicated examples

appear below), so in this case the process as a whole is blocked.

The consumer looks like this:

process consumer (producer : link);

type data - whatever;

entry transfer (info : data); remcte;
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pr-ceu.re cznsume (infz : data)

becin

-- w- a'- evcer

er.I CCsu...e;

var buffer : data;

be_-n c- ns ,;e r

accept transfer (buffer) or. producer; reply;

consume (cuffer);
enz:;

en_ cczs."e_-

The accept satement IS used to provide an operation requested by the process at the other end of a

link. In our example, the producer u.,es a connect statement to request a transfer operation over its link to

the consumer, and the consumer uses an accept statement to provide this operation.

accer- opname ( varlist ) on linkna.,

re y ( expr list

The reply clause at the end of the accept statement returns its -arameters to the p;ocess at the other end of

linkname and unblocks the thread of control that requested the operation opname. The parameter types for

opname must be defined by an entry declaration. Arbitrary statements can appear inside an accept state-

ment, including nested accepts. In our example, the consumer has nothing it needs to do before replying.

A link can be thought of as a resource. In our example neither the consumer nor the producer can

name the other directly. Each refers only to the link that connects them. The consumer. having received

all the data it wants, might pass its end of the link on to another process. Future transfer operations would

be provided by the new consumer. The producer would never know that anything had happened.

A variable of type link rcally identifies a link end. Link ends are created in pairs, by a built-in rou-

tine called newlink. Our producer/consumer pair could be creat!d with the following sequence of state-

menLs:

var L : link;

begin

startprocess ("consumer", newlink (L));

startproces ("producer", L);

To make it easy to write sequences of code such as this one, newlink returns one of the link ends as its

function value (here passed on immediately to the consumer) and the other through a reference parameter

(here saved temporarily in L so that it can be passed to the producer in the second call to startprocess).

Since messages are addressed to links, not processes, it is not even necessary to connect the producer

and consumer directly. An extra process could be interposed for the purpose of filtering or buffering the

data. Neither the producer nor the consumer would know of the intermediary's existence.
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s~irtprocess ("cersumer", newirk (L)

startproce!s ("buffer", L, newlink (H))
s'_ar:.xr cess ("4r /zer", Mi ;

Code for a bufter process appears in section 3.4.

To move a link end. a process need only enclose it in a message (via connect, accept, reply, or start-

proce,, ,. Once the message i- received, the sending process can no longer use the transferred link, but the

receiving process can. The compiler provides the run-time system with enough information about types

that this transfer is guaranteed to work for messages containing arbitrary data structures (including variant

rec:ords that might have links inside.

A link beween a server and a client can be passed on to a new client when the first one doesn't need
it an> more. It can also be passed on to a new server (functionally equivalent to the old one, presumably)

in order to balance work load or otherwise improve performance. In a large distributed environment, many

servers are likely to be implemented by collections of processes. These processes may move their end of a

client link frequentl. in order to connect the client to the member of their group best able to serve its

requests at a particular point in time.

One common use of link movement is to implement a name server process that maintains a database

of server names and links. Clients in need of a particular service can ask the name server for a link on
which to request that service (see box, p. II).

3.2. Implicit Receipt

In our producer/consumer example, each process contains a single thread of control. In the consu-

mer, this thread accepts its transfer requests explicitly. It is also possible to accept requests implicitly, and
the choice between the two approaches depends largely on whether we view the consumer as an active or a

passive enuty.

If we think of the producer and consumer as active peers, then it make,..nse for the consumer to

contain a thread that "deliberately" waits for data from the producer. If we choose, however, to think of
the cons-ier as a server (a spooler for a printer, perhaps), then we will most likely want to write a more

passive version of the coue - one that is driven from outside by the availability of data. Since a demand-

driven spoolec , ely to have multiple clients, it also makes sense to give each incoming request to a

separate th;.- .,ontrol, and to create those threads automatically. Our consumer can be re-written to

use implicit ,eceipt .s follows:

process umer (producer : link);

type iata - whatever;

procedure c.-nsume (info : data);

begir.

-- whatever

end consume;



Link Movement

There are many reasons to change the connections between processes at run time. Certainly a
newly-created process must be connected to existing processes that can provide it with input and output. In
a single. large application, it is also common for computation to move through a series of distinct phases,
each of which requires a different set of processes and connections. In a robust, geographically distributed
system, a process that is unable to obtain a service from its usual source (because of hardware failures, for
example, or overloaded communication lines) may wish to connect to an alternative server. In the example
below we see a process (called the swiichboard) whose job it is to keep a registry of servers who are
willing to accept new clients. The command interpreter, or shell, is likely to provide each newly-created
process with a link to the switchboard, from which it can obtain links to whatever other servers it may
need.

To find, for example, a line-nrinter spooler, client C would send a message to the switchboard:

connect find_server ("Ip spooler' I spooler_link) on switchboard_link;

Upon receiving this request, the switchboard would scan its registry for a server that has advertised the
name "ip spooler." Assuming such a server exists, the switchboard would create a new link, pass one end
on to the server in a newclient message, and return the other end to the client:

entry find server (server name :string) :link;
var server, rtn :link;

begin
server :=lookup (server_name);
if server - nolink then reply (nolink) ;
else Connect newclient (newlink (rtn) I) on server; reply (rtn);
end;

end find_server ;

Newlink returns one link end as its function return value (which here becomes a parameter to the newclient
operation) and the other through a reference parameter. Each server that wishes to accept new clients must
provide the switchboard with a link over which it is willing to accept newclient requests.
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entr," transfer (=nrfc - data)

be in

rei y:

consume (infc)

end transfer;

ber:in -- ccns;mer

bini producer tz transfer7

eni ccnsc;,-r.

Here we have provided a begin ... end block for the transfer entry procedure, instead of declaring it

remote. Each connect to transfer will create a new thread of control in this version of the consumer. As

vith an accept block, the reply statement of the entry causes the run-time support package to unblock the

thread of control in the producer) that requested the current operation. The replying thread continues to
exist until it runs off the end of its entry. The producer shown above can be used with either version of the

consumer, without modification.

The bind statement serves to create an association between links and entry procedures:

n =.. Lr k 1.st t: enlr-_lis:

Only those operations provided by accept statements and bindings to entries can be requested by the pro-

cess at the far end of a link. Connect statements that request a non-existent operation will cause an Ada-

like exception in the requesting thread of control.

Bindings can be broken as well as made:

unbind link-list from entry_list ;

The ability to manipulate bindings at run time is a powerful mechanism for access control. Each process

has complete control over which of its communication partners can invoke which operations at which

points in time. Reference [20] contains a Lynx solution to the classic reader/writers problem. This solution

permits a chent to obtain read and/or write access to a resource and perform an arbitrary sequence of

operations before relinquishing that access. The sequence of operations need not be known at the time that

access is obtained; a client can, for example, obtain read access, read an index, and read a location calcu-
lated from that index in one protected session. A similar solution in Ada [28] requires a complicated sys-

tem of unforgable keys, implemented in user code.

It is the ability of a server to refer to links by name that permits it to implement access control. A

server can, if desired, consider clients as a group by gathering their links together in a set and by binding

them to the same entries. It is never forced, however, to accept a request from an arbitrary source that hap-

pens to know its address. Of course, a server has no way of knowing which process is attached to the far

end of a link, and it has no way of knowing when that far end moves, but this is in keeping with the concept

of process autonomy. A link to a client represents an abstraction (a connection over which to provide a
service) every bit as much as a link to a server represents a connection over which a service is provided. In

fact, it is entirely possible for two processes to act as servers for each other, with a single link between

them. A file server, for example, might use a link to a sort utility in order to maintain indices. The sort

utility for its part might use the file server as a place to store large data sets.



13

Svmmetrie. two-directuonal links strike a compromise between absolute protection on the one hand

ani impl;iLu\ and flexibilit\ on the other. They provide a process with complete run-time control over its

connections to the resi of the ', orld. but limit its knowledge about the world to what it hears in messages.

A process can confound its peers by restricting the types of requests it is willing to accept, but the conse-

quences are far from catastrophic. Exceptions are the most serious result, and exceptions can be caught.

Even an uncaught exception kills only the thread that ignores it.'

3.3. Type Checking

To a large extent, links are an exercise in delayed decision making. Since the links in communica-

tion statements are variables, requests are not bound to communication paths until the moment they are

sent. Since the far end of a link can be moved, requests are not bound to receiving processes until the

moment they are received. Since the set of valid operations depends on outstanding bindings and accepts,

requests are not bound to receiving threads of control until after they have been examined by the receiving

process. Only after a thread has been chosen can a request be bound to the types it must contain. Checks

must be performed on a message-by-message basis.

Run-time type checking provides three distinct advantages:

(1) A process can hold a large number of links without knowing what types of messages they may even-

tually carry. A name server, for example, can keep a link to each registered process, even though

many such processes will have been created long after the name server was compiled and placed in

operation.

(2) A process can use the same link for different types of messages at different times, or even at the

same time. It need not declare a conservative superset of those types at compile time, nor ever worr

about receiving a message of a currently-inappropriate type at run time.

(3) With an appropriate choice of semantics for type equivalence, the compiler can be designed to work

without a global database of types. The language implementor is relieved of the burden of distrib-

uted database management and of the problem of upward compatible changes.

Type checking in Lynx is based on structural equivalence. Two types are considered the same if

they contain the same internal structure - the same set of primitive types composed with same higher-

level type constructors. The compiler can provide the run-time system with a "canonical" representation

of each type, so that type checking becomes a simple comparison for equality of canonical forms.

Since canonical forms can be of arbitrary length, run-time comparisons are potentially costly. To

minimize this cost, the Lynx compiler uses a hash function to compress its type descriptions into 32-bit

codes [221. Hashing reduces the cost of type checking to less than 10 microseconds per remote operation.

It introduces the possibility of undetected type clashes, but at a probability of less than one chance in a bil-

lion with a good hash function.

A second potential problem with run-time checking is that programming errors that would have been

caught at compile time in other languages may not be noticed until run time in Lynx. This cost, too, is

4 Admittedly, a malicious process can serve requests and provide erroneous results. No language can prevent it
from doing so.
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sniall, and Ca&i1. .lu,iticd b,, the type system's simplicity and ilexibility. As a practical matter, we tend to

rely on shared de,:laration files to ensure that run-time clashes are rare. We catch most type errors at com-

pilc uie and the rest at run time. much more easily than we could catch all of them at compile time.

A final cost of the Lynx approach to types is the somewhat liberal checking implied by structural

equivalence. Variables with the same arrangement of components will be accepted as compatible even if

the abstract meanings of those components are unrelated. Lynx shares this form of checking with many

other languages. including Algol-68, Smalltalk, Emerald,,and many dialects of Pascal. We are happy with

structural equivalence. No typ- system, no matter how exacting, can ensure that messages are meaningful.

Type checking can be expected to reduce the likelihood of data misinterpretation, not to eliminate it.

3.4. Using Multiple Threads

Though the implicit-receipt version of our consumer process will contain a thread for every invoca-

tion of the transfer operation, it is likely that only one such thread will exist at a time. For a slightly more

complicated example, consider the buffer process mentioned above. Interposed between a producer and

consumer, the buffer serves to smooth out fluctuations in their relative rates of speed.

;rocess buffer (consumer, producer : link);

const size = whatever;

type data - whatever;

var

b-f : array [I..sizel of data;

firstfree, lastfree : [l..size];

entry transfer (info : data);

cec-n

await firstfree <> lastfree: -- not f,.:'!

bLf(firstfreel := info;

firstfree := firstfree % size + 1;

reply;

end transfer:

var inf3 : data;

begin

firstfree := 1;

lastfree size;

bind producer to transfer;

loop

await lastfree % size + I <> firstfree; -- not empty

lastfree :- lastfree % size + 1;

info :- buf[lastfree];

connect transfer (info 1) on consumer;

end;

end buffer.

Every Lynx process begins with a single thread of control, executing the process's main begin ... end

block. New threads are created in response to inco,.ar'g requests on links bound to entries, and may also be

created explicitly by "calling" an entry locally.
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The thread> of control w ithin a single process do not execute in parallel: each process conunues to

execute a single thread until it blocks. The process then takes up some other thread where it last left off. If

no th-read is runnable, then the process waits for completed communication to change that situabion.

Threads may block (1) for communication (connect, accept, reply), (2) for completion of nested

threads (when leaving a shared scope), (3) for a reply from a locally-created thread, and (4) for an expli-

citly await-ed condition. In the bounded buffer example, the await statement blocks the current thread until

the buffer is non-empty or non-full, as appropriate. There.is no need to worry about simultaneous access to
buf, firstfree, or lastfree, becau;e the coroutine-style semantics guarantee that only one thread can execuie

at a Lime.

Of course, the mutual exclusion of threads in Lynx prevents race conditions only between context

switches. In effect. Lynx code consists of a series of critical sections, separated by blocking statements.

Since context switches can occur inside zubroutines, it may not be immediately obvious where those block-
ing statement, are, but the compiler can help by identifying them in listings. Experience to date has not

uncovered a serious need for inter-thread synchronization across blocking statements. For those case, that

do arise, a simple Boolean variable in an await statement performs the work of a semaphore.

The syntax of Lynx allows entries to be declared at an) level of lexical nesting. Non-global data
ma% therefore be shared by more than one thread of control. The run-time data structures required to
implement this sharing are discussed in the box on page 16. In the file server example in the following sec-

tion, there will be one thread of control for every open file. Additional, nested threads will be used to
implement file-specific operations.

A link end may be bound to more than one entry. The bindings need not be created at the same time.

A bound end can even be used in subsequent accept statements. These provisions make it possible for

separate threads to carry on independent conversations on the same link at more or less the same time. The

startprocess statement, for example, might be implemented by sending a request to a process manager writ-

ten in Lynx. Each such request might create a new thread of control within that manager. Separate threads

could share the same link between the process manager and file server. Their requests to open and read

executable files would interleave transparendy.

When all of a process's threads are blocked, run-time support routines attempt to receive a message

on any of the links for which there are outstanding accepts or bindings, or on which replies are expected for

outstanding connects. Incoming replies can only have been sent in response to an outgoing request. Each

such reply can therefore be delivered to an appropriate thread of control. Incoming replies, by contrast, can

be unexpected or unwanted. The operation name of a request is compared against those of the outstanding
accepts and bindings for its link. If a match is found, then an appropriate thread can be made ready and

execution can continue. If there are no accepts or bindings, then consideration of the message is post-
poned. If accepts or bindings exist, but none of them match the request, then the message is discarded and

an exception is raised in the thread that executed the connect statement at the other end of the link.

3.5. A File Server Example

A more realistic example of the use of threads and links can be seen in figure 1. This figure contains

a simplified version of the code for a file server process under Charlotte. The original Charlotte file server
was written in a dialect of Modula, using sequential features only, and relying on library calls for
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Cactus Stacks

A cactus stack is actually a collection of stacks,
prefixes of which ma\ be shared. The most common use of
cactus stack-s is to manage space for nested coroutines.
Although the exact origin of the concept is obscure, it dates to
at least the middle 1960's, when it appeared in the S RS

architectures of the Burroughs B6500 and B7500 computers.

In the file server example of figure 1, consider what
must happen when two different files are open and one of the
threads that manage those files contains nested threads itself. 01 02
Both of the threads executing the open entry procedure will
have access to global variables. The) will, of course, have
access to their own local variables as well. Now if one of
those threads (call it '02') is managing a file that is open for G
both reading and writing (with random access), it will be
possible for incoming stream and readseek requests to create
concurrent threads inside the context of 02 (concurrent in the
sense that they exist and occupy space simultaneously). These
threads will need to share access to 02's local variables.

In the illustration, each segment of the cactus stack represents a subroutine or entry activation. Each
branching point corresponds to the creation of a nested thread of control. There is therefore one thread per
leaf of the structure, and one thread for every internal segment (other than the root) that lies at the top of a
trunk. From the point of view of any one thread, the path back down to the root looks like a normal stack.

Lynx ensures that no thread can leave a scope in which nested threads or bindings are still active.
This rule ensures that segments never "disappear" out of the middle of the structure. In our file server
example, a thread executing the open entry for a write-only file will finish its work almost immediately.
When it reaches the end of its scope, however, it will be suspended automatically until there is no further
possibility of creating threads in the writeseek, stream, and readseek entries. This will occur only when the
client closes its file by destroying the link that represents it.

Each trunk of a cactus stack can be placed in a single, contiguous array, allocated when its thread is
created. Alternatively, each individual segment (frame) can be allocated dynamically. The Lynx compiler
adopts the latter approach in order to economize on space, in the expectation that programs may contain
very large numbers of threads. A caching strategy for frames makes allocation relatively inexpensive, but
further optimization is still desirable. As it parses its input files, the Lynx compiler keeps track of which
subroutines contain statements that may cause a thread switch. Space for such routines must be allocated
in the cactus stack, since returns need not occur in LIFO order. For routines that cannot cause a thread
switch, however, space may be allocated on an ordinary stack. In practice most subroutines (and
particutarly those that are frequently called) can be seen to be sequential. The coroutine-like semantics of
threads in Lynx allow these routines to be implemented at precisely the same cost as in conventional
sequential languages.

communication. It consisted of just under 1000 lines of code, and was written and rewritten several times

over the course of a two-year period. It was a constant source of trouble. The Lynx fileserver is just over
300 lines, and was written in only two weeks. It would have required even less time if it had not been

undertaken concurrently with debugging of the language implementation.
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: przceas fileserver (switchboari : i:nk);

2 type str.ng = whatever: bytes = whatever;

3 entry open (f:lenarne : string; readflag, writeflag, seekflag Boolean) link;

4 var filen : -:.nk;reatp r, wrteptr : intecer;

c excert:cn see inir;

C prcceJh;re p-t (data bytes; f:lenare : string; writeptr intecer)

external;

8 functicn cet (filename : string; readptr : integer) : bytes; external;

9 f..,' ca7n avaliable (filenae : string) : Boolean; external;

C ent r" wrrteseek (newctr : integer);

I- beg:n

'2 wr:tertr := newptr; reply;

13 end writeseek;

14 entr strea. (data : bytes);

beg in

IE put (data, filename, writeptr); writeptr +:= 1; reply;

17 end strea7;

:E entry readseek (newptr : integer);

19 begin

2C readptr := newptr; announce seeking; reply;

21 enz readseek;

2 begin -- open

23 if available (filename) then

24 reply (newlink (filelnk)); -- release client

25 readptr :- 0; writeptr :- 0;

26 if writeflag then

27 if seekflag then bind filelnk to writeseek; end;

28 bind filelnk to stream;

29 end;

30 if readflag then

31 if seekflag then bind filelnk to readseek; end;

32 loop

33 begin

34 connect stream (get (filename, readptr) I ) on filelnk;

35 readptr +:- 1;

36 when seeking do

37 -- nothing; try again at new location

38 when REMOTEDESTROYED do

39 exit; -- leave loop

40 end;
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4" e:-: -- ic

42 e -- if readflac

4-- es ISC n-- avalahIe

44 reol .:" lnk) -- release client

45 end:

46 -- control wi" not leave 'open' until nested entries have died

47 end open:

4E entry r, ew:..:enr (client link);
4 9 he ::n

h-n cleno t newclient, open; reply;

61 eni newclien" ;

6: b:-ci swotchb:ard tc newc.i.en;

54 end fileserver.

Figure 1: Stream-based file server in Lynx.

The ncwciient convention has been used in this example. We have written the server to take a single

initial argument: a link to the switchboard name server. Additional clients are introduced by invocations of
newclient over links froin the switchboard or from clients. When a newclient request is received (line 48),

the file server binds that link to an entry procedure for each of the services it provides. One of those

entries, for opening files, is shown in this example (lines 3-47).

Open files are represented by links. Within the server, each file link is managed by a separate thread

of control. New threads are created in response to open requests. After verifying that its physical file

exists (line 23), each thread creates a new link (line 24) and returns one end to its client. It then binds the

other end to appropriate sub-entries. Among these sub-entries, context is maintained automatically from

one request to the next. We have adopted the convention that data transfers are initiated by the producer

(with connect) and accept-ed by the consumer. As we have seen, this asymmetry allows the transparent

insertion of an intermediate filter or buffer. When a file is opened for writing the server plays the role of

consumer. When a file is opened for reading the server plays the role of producer.

In additional to a conventional mechanism for raising exceptions in a single thread of control, Lynx
also permits one thread to cause an exception in another. In the file server example, this facility is used to

handle seek requests in a file that is open for reading. Under the normal stream protocol, the file server will

always attempt to transfer a block (with "connect stream ...") as soon as the previous block has been

received. In order to read blocks out of order, the client invokes a readseek operation. The thread that pro-

vides this operation uses an announce statement (line 20) to interrupt the thread (line 36) that is trying to

send the wrong block. That thread then retries its connect, using the updated file pointer. Since incoming

requests (and readseek requests in particular) are received only when all threads are blocked, the thread

that provides the readseek operation can be sure that the thread that is streaming data must be stopped at its

connect statement. No race conditions can occur.



19

1 o clo e an open file. a client need on]\ destroy the link that represents the file. 5 A thread that trie,
to usC a destroyed link fees a REMOTEDESTROYED exception (caught at line 38 in the file server,.

Bindline for a destroyed link are broken automabically. These mechanisms suffice in this example to clean

up the context for a file.

3.6. A Distributed Game-Playing Program

Using an implementation of Lynx on the BBN Butterfly multiprocessor, we have created a distrib-

uted program that plays the game of checkers (draughts). Since our principal goal was to evaluate Lynx

and not to investigate the design of parallel algorithms, we adopted an existing parallelization of alpha-beta

search, designed b\ Jack Fishburn at Wisconsin [I1].

The basic idea behind the algorithm can be seen in figure 2. There are three different kinds of
proeess~oC. On- process (the "master") manages the user interface (in our case, this is a graphic display

under the X window system). A second process (the "midling") manages the parallel evaluation of possi-
ble moves. A third kind of process (the "slave") performs work on behalf of the midling. There is only

one master and one midling. Performance is maximized when there is one slave for every available pro-

C C o.

Within the midling, one thread of control is dedicated to exploring the first few levels of the game

tree. It constructs a data structure describing all of its possible moves, all of the possible subsequent moves
by its opponent, all of its possible moves after that, and so forth. At a given depth in the tree (typically four
or live levels), it enters board positions into a queue of work to be performed by slaves.

Each slave is represented by a separate thread in the midling. That thread repeatedly removes an

entry from the work queue, sends it to a slave, and waits for the result. When that result comes back it
updates the game tree, performs any, necessary pruning (to throw away moves that are now known to be

sub-optimal), and obtains a new entry from the queue. In order to avoid storing all of the top few levels of
the (very large) game tree at once, the thread that creates the data structure blocks when the work queue is

full. Games tree nodes are thus created on demand. Likewise, the threads that dispatch work to slaves will

block when the work queue is empty. Despite the fact that the checkers player is a single, coordinated pro-
gram, the midling bears a strong resemblance to a server. It would have been significantly more difficult to

write the midling with a single thread of control.

One consequence of the communication semantics of Lynx is that a process does not notice incom-

ing messages until all of its threads are blocked. There is no way to receive a message asynchronously or

to allow a high-priority message to interrupt the execution of lower-priority "background" computation.
In the checkers program, performance is likely to improve if a slave can be interrupted when the midling

discovers that its subtree has been pruned, or perhaps when it discovers new information that will help the
slave do more pruning internally. For cases such as this, Lynx provides a low-cost polling function that

can be used to determine if messages are pending. Slaves execute the statement

5 Destroy is a built-in procedure that takes a single parameter of type link. Variables accessing either end of a
destroyed link become dangling references.



20

midling

000

slaves

Figure 2: Ch,.,kers program structure.

await idie;

at the top of an outer loop. Update messages from the midling are therefore received within a reasonable

amount of time.

We have yet to perform an extensive performance study on the checkers-playing program. Informal

experiments with various problem parameters (number of tree levels in the midling, size of subtrees
evaluated by slaves, frequency of update messages, etc.) have produced approximately 20-fold speedups
with 100 working slaves. The primary limiting factor appears to be that many of the subtrees that are
evaluated in parallel would have been pruned off and never explored by the standard sequential algorithm.

4. Implementation Experience

An implementation of Lynx for Wisconsin's Charlotte operating system was completed in 1984. It

was ported to a simpler version of Charlotte in 1987. Charlotte runs on a collection of VAXen connected
by a token ring [9]. An implementation for the BBN Butterfly multiprocessor was completed in 1986.

Other, paper designs exist for UNIX (using TCP/IP) and for an experimental system known as SODA [14].

In addition to providing a testbed for evaluating Lynx, our implementation experience has led to
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unexpected insights into the relationship betmeen a language run-time package and the underlying operat-
ing s stem [11 201. and also into the factors that contribute to message passing overhead 122.

4.1. The Language/Kernel Interface

A distributed operating system provides a process abstraction and primitives for communication

between processes. A distributed programming language can regularize the use of the primitives, making
them both safer and more convenient. The level of abstraction of the primitives, and therefore the division

of labor between the operating system and the language support routines, has serious ramifications for
efficiency and flexibilit%. Lynx is one of the few distributed languages that has been implemented on top of
more than one operating system.

Simpl\ put. the implementation experience with Lynx is that the more primitive the operating system
within reason, the easier it is to build a language above it. When we set out to implement Lynx we did not

expect to discover this result. Symmetric, two-directional links are directly supported by Charlotte. The

original motivation for Lynx was to build a language around them. Yet despite the fact that Charlotte ker-
nel calls provided links as a fundamental abstraction, the implementation of Lynx was extremel\ compli-

cated and time-consuming. Many of the functions provided by the kernel were almost, but not quite, what
the run-time package needed. For example, Charlotte's receive function provided no way to say that only

reply messages were wanted (and not requests). A complicated protocol was required in the run-time
package in order to reject and return unwanted requests. Similarly, the Charlotte send function allows links

to be enclosed in messages, but only one at a time. Additional run-time protocol was required to packetze
multi-link messages.

By comparison, implementation of Lynx on top of Chrysalis was surprisingly easy, despite the fact

that Chryalsis has no notion of a link or even of a message. What Chrysalis does provide are low-level
facilities for creating shared memory blocks and for atomically manipulating flags and queues. The box on

page 22 explains how links can be built from these primitives. The fact that Chrysalis supports shared
memory is a significant but not deciding factor in it suitability for Lynx. Our paper implementation for the

message-based primitives of SODA is equally simple. Our TCP/IP design lies somewhere in the middle.

Like most distributed operating systems, Charlotte was designed with the expectation that program-

mers would invoke its primitives directly. This expectation appears to have been naive, but by no means

unique. The proliferation of remote procedure call stub generators suggests that users of a wide range of
message-passing operating systems have found their primitives too primitive to use. Unfortunately, the

creation of interfaces that are almost usable for day-to-day programming has meant that substantial

amounts of functionality and, consequently, flexibility, have been hidden from the user. Remote procedure

calls may work, but alternative approaches to naming, buffering, synchronization, error recovery, or flow

control are generally not available.

Our experience with Lynx suggests that an operating system kernel should either be designed to sup-

port a single high-level language (as, for example, in the dedicated implementations of Argus [17],
Linda [7], and SR [I]), or else should provide only the lowest common denominator for things that will be

built upon it. A middle-level interface is likely to be both awkward and slow: awkward because it has

sacrificed the flexibility of the more primitive system; slow because it has sacrificed its simplicity. We
recommend low-level kernels because they can maintain flexibility without introducing costs.
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Links L nder Chrysalis

The Butterfly implementation of Lynx consists of a cross compiler that runs on a host machine and a
run-time support package that implements links in terms of Chrysalis primitives. For compatibility
reasons, and to simpit\ the implementation, the compiler generates C for "intermediate code". Errors in
the Lynx source inhibit code generation, so the output. if an, will pass through the C compiler without
complaint. Programmers are in general unaware of the C back end.

On the Butterfl\. ever Lynx process allocates a Chrysalis atomic queue when it first begins
execution. This queue is used to receive notifications of messages sent and received on any of the
process's link,. A link is represented by a block of shared memory, mapped into the address spa~es of the
two connected prc,,esses- The shared meniory object contains buffer space for a single request and a single
rep!\ in each drecton. Since dynamic allocation and re-mapping of message buffers would be
prohihitixel\ expensive, messages are limited to a fixed maximum length, currently 2000 bytes. Each
procs, keep> an intemal list of the threaas that are whaiung for bufiers to be emptied or filled.

request for P request for Q

reply, for P reply for Q

In addition to message buffers, each link object also contains a set of flag bits and the names of the
atomic queues for the processes at each end of the link. When a process gathers a message into a buffer or
scatters a message out of a buffer into local variables, it scts a flag in the link object (atomically) and then
enqueues a nouce of its activity on the atomic queue for the process at the other end of the link. When all
of the process's threads are blocked, it attempts to dequeue a notice from its own atomic queue, waiting if
the queue is empty.

The flag bits permit the implementation of link movement. Whenever a process dequeues a notice
from its atomic queue it checks to see that it owns the mentioned link end and that the appropriate flag is
set in the corresponding object. If either check fails, the notice is discarded. Every change to a flag is
eventually reflected by a notice on the appropriate atomic queue, but not every queue notice reflects a
change to a flag. A link is moved by passing the (address-space-independent) name of its memory object
in a message. When the message is received, the sending process removes the memory object from its
address space. The receiving process maps the object into its address space, changes the information6 in the
object to name its own atomic queue, and then inspects the flags. It enqueues notices on its own queue fo,
any of the flags that are set.
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4.2. Thy Cost of Message-Passing

In our Butterfl\ implementation of Lynx. the simplest remote operations complete in less than tAo
miliisc'ond>. To place this ugure in perspectuvc, a call to an empty procedure takes 10 microseconds on an
mndi idu_! Butterfl\ nude. An atomic tes,-and-set operation on remote memory takes 35 i.s. An atomic

enqucue or dcqueue operation takes 80 as. In the following table. nullop is a trivial remote operation with
no parameters. Bigop, is the same as nullop, but includes 1000 bytes of parameters in each direction.

E\pli it r,.ceipt uses a-, accept statement; implicit receipt uses a binding to an enLrv.

Explicit receipt: Implicit receipt:
process nodes process nodes

dificrent same different same
nu1Lop " nIN 2.5, ms 2.4f ms 2.76 ms
blcop 3.45 n,, .-.21 n-s 3.72 m, 4.42 ms

Inter-nose e"-,ratLions finish mnre quickly than i-i'a-node operations because the two processors can over-
lap t:hjr computation.,. Implicit receipt costs more than explicit receipt because of the need to create and

destro. a thread. We have reason to believe that these times could be reduced by additional tuning, but it
seems unhkci\ that the lowest tigure would drop below a millisecond and a half. A remote invocation is
thus two orders of magnitude more expensive than a local procedure call, a result that is consistent with
most other well-tuned message-passing systems.

21% - actual communication
Cleanng and setting flag bits, posting notices on queues, calculating
locations of message buffers.

22c% - thread management
Thread queue management, queue searching (dispatcher), context
sv, itches, cactus stack frame allocation, bLffer acquisition.

I I 11% - bookkeeping
Keeping track of which threads want which sorts of services and which
threads are willing to provide them.

18% - checking and exception handling
Verifying link validity, verifying success of kernel calls, typ.. checking,
establishment of Lynx exception handlers, initialization of stack frame
exception information.

651% - protocol option testing
Checking for link movement, asynchronous notifications, premature
requests, optional acknowledgments.

22% - miscellaneous overhead
Timing loop overhead, dispatcher loop and case statement overhead,
procedure-call linkage, caching of constants in registers.

Figure 3: Coutributoi. to Message-Passing Overhead (in percent of total work performed)
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,na: ', r,. r-, s'c loud the co,,t of messase passing to be both frustraUtri and putiini:

0t onl d;, ssc % ,d Uiat things worked faster, we also didn't understand why the) v,orked at the speed

th.\ d.! In order to obtain a better explanation of -)A here the uime goc." we profiled benchmark pro-

gran- at the inu--ueon level and assigned each individual instruction to one of 23 different funcuonaIl

categori. The results of this profiling are summarized in figure 3. A timeline for a 2.0 ms remote: opera-

tion appear' n tlicure -4. The tni line indicates the amount of time devoted to each of the phases of a

remote ivo:atio. but proideos relaUVCl little insight into the expense of individual language features
involed in niC,.aL2 p., ifl!.

Prokcdur aill overhead and flag bit manipulation are the onl. single iterns in the profiling table that

acount for more than 10, of the total communication overhead. Small savings could undoubtedly be

reil.,d here and the.'. but there doe> not seem to be any way to achieve significant performance gains
, Idhoilt el.nainl !.Lu~iciCe teature. Work by other researchers tends to contirm rhe hypothesis that dat

tran< ,nssion tim. do not dominate the cost of practical message-passing systems [8. 14.17,231> High-

lvcel semanti. tunetSm. ,uch as addressing, dispatching, bookkeeping, testing. and error handling are at

la, sminan.: a,. olten more so. One millisecond appears to be a nearly universal lower bound on

round-trip communi. a Ln tinis with mid-1980s microprocessor-based architectures, suggesting that it

m b'. b1 i-1.. i.t, pij,)id attractive message-passing semantics in significantly fewAer than 1001

instruction>.

5. Conclusion

Numerous programs have been written in Lynx over the course of the past four years, both as
research project,, and as coursework [6,9]. In comparison to sequential programs that perform communi-

catnn throucli: hirars routine>., Lvnx programs are consistLntlv shorter, easier to debug, easier to write, and
easier to read Muh of the explanation is simply the difference between a language and the lack thereof

Ada. Argus, Linda, NIL, and SR can make similar claims. With a few exceptions, all these languages pro-

vide attractive syntax, secure type checking, error handling with exceptions, and automatic management of

context for muinple conversations.

Beyond these facilities, however, Lynx provides an unusual degree of run-time flexibility.

, Symmetric communication links provide abstraction and transparent reconfiguration without the res-

trictions of compile-time type checking.

,, The ability to distinguish between clients provides access control and protection.

* Mutually-exclusive threads provide context for multiple conversations without the complexity of

synchronizing access to memory. The integration of threads with communication combines the con-
ceptual clarity of remote procedure calls with the performance of non-blocking messages.

Each of these advantages can be of use in single-program applications. Even more important, they extend
the advantages of language support to autonomous but interacting programs.
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Figure 4: Timeline for a simple remote invocation.
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